Once you have selected assistive technology (AT) for a student, how do you know if it is a good match and if it producing intended results? Each day, AT specialists and practitioners ask questions about how to assess and/or evaluate how well a particular AT application is working. Assessing AT is important because it ensures that the tool is actually helping the student for the intended purpose.

Evaluation and assessment are often used interchangeably, even though they can be distinguished. For example, Bain (1997) refers to an evaluation as a composite picture of the technology system and an assessment to the instrument or means of gathering data from specific testing procedures. For the purpose of this Technology in Action, we will define assessment as the process of collecting data for the purpose of making decisions about individuals and groups (Salvia & Ysseldyke, 2001).

Assessments can be either formal or informal. Many AT assessment tools are informal. They may be structured and guide systematic observations within specific contexts, but they are often ongoing and are one of several tools used during the assessment process. They include:

- Categorical tools that call for coding, and possibly quantification.
- Narrative tools that include journals, anecdotal notes, or ethnographic notes.
- Descriptive tools that include verbatim accounts and descriptions of contexts.

(Loardo & Notari-Syverson, 2001)

Regardless of the type of data being collected by the assessment tool, it is preferable to use those that have published psychometric characteristics. Instruments
with documented validity have been shown to measure what was intended. Documented reliability assures that findings will be consistent across uses.

This Technology in Action presents a variety of available assessment tools along with a description of their characteristics that can be used as a framework for selecting appropriate AT tools. The instruments described in this Technology in Action include a statement about the availability of reliability and validity data.

Categories of AT Assessments

The Assistive Technology Outcomes/Measurement System (ATOMS) project at the University of Wisconsin–Milwaukee targeted the definition and pre-development phases of a next generation AT outcomes measurement system. A comprehensive needs assessment, prototype instrument development, and consensus building activities framed an integrated set of research and development activities. These activities—which addressed urgent needs—identified components of a future AT outcomes measurement system, including AT use and abandonment. As part of the project, a comprehensive search of published AT instruments was performed. A searchable database, called ID-AT-Assessments, cataloged the nature of the instruments’ questions and their purposes. This data set and instrument library serves as a guide for practitioners to support the selection of the best measures for their clinical situations.

As part of its work, ATOMS identified five different types of assistive technology assessments:

- **Diagnostic.** Diagnostic assessments are designed to identify an area for treatment planning. These are most often used in medical and rehabilitation settings.

- **Intervention.** Intervention planning assessments are similar to diagnostic assessments. The major difference is the role of team collaboration for intervention planning and the educational setting is the primary arena. The emphasis is on enabling, not remediating.

- **Satisfaction.** Satisfaction, outcomes, and research assessments are used primarily after the assistive technology has been implemented. Satisfaction assessments examine the AT user’s perception of the degree of success the AT has provided for achieving a desired goal. Satisfaction typically is assessed through an interview.

- **Outcomes.** Outcomes assessments measure the degree of success quantitatively, and are developed from the clinician’s or service provider’s perspective. They show whether the device is being used or has been abandoned, the impact on the user, and, often, the costs related to the implementation of the AT. These instruments can look at success from multiple perspectives (e.g., user, service provider, the family, and the funding agency).

- **Research.** Research assessments also look at outcomes but from the perspective of a research question, which is typically more focused on one aspect of the process than the whole implementation and the whole individual.

Frameworks Guiding AT Assessment

There are many models that can guide AT assessment. Each provides a unique perspective to be considered during assessment. Examples include:

- **Human Activity Assistive Technology (HAAT) Model** was presented by Cook and Hussey in 1995. The essence of this model is the four interrelated components that form a system where the human, the assistive technology, and the activity are integrated within the context.

- **SETT Framework** (Zabala, 2000) is not just a model for assessment but also is a model for the broader delivery of AT services. It considers student, environment, task, and tools during the process of assessment.

- **Human Function Model** developed at the University of Kentucky by Lahm, Bell, and Blackhurst (2002) focuses on the functions or tasks the person needs to perform.
Due to the similarities of some of the types, they often are grouped into three categories: Diagnostic/intervention, satisfaction, and outcomes/research.

Selected Assessments

Appendix 1 lists 28 assessments selected from the 47 found in the ATOMS database that are available for use with school age children. The publisher, date of publication, price, and URL to access for more information are provided. Several of these are free downloads and it would be worthwhile to download them for review. Appendix 2 organizes these assessments into the three categories—diagnostic/intervention, satisfaction, and outcomes/research—and provides an overview of characteristics in the following areas:

- **Function area.** With so many tools available, it is important to consider your situation and need before choosing an assessment tool. Eight of these assessments can be used to address practically every area of function including augmentative and alternative communication (AAC), assisted listening, computer access, electronic aids for daily living (EADL), activities of daily living, mobility, seating and positioning, organizers, reading supports, writing supports, and vision access. Six of these are diagnostic/intervention assessments, one is satisfaction and one is categorized as an outcomes/research assessment. Each of these would serve as a good general assessment tool for almost any student, but they may not be detailed enough to provide the information needed for some areas. Examples of these might be for seating and positioning, mobility, and vision. Other tools are available that specialize in these areas.

- **Age.** Age is another important consideration when selecting an assessment instrument. Seven of these tools claim to appropriately assess individuals from birth through adulthood. Again, these general tools may not be useful when more specific probes are needed based on age. Eleven of the instruments focus on children, eight covering the complete range of school age children, and three are limited to birth through elementary.

- **Disabilities.** Most of the instruments were developed to assess students with a range of disabilities. Those that specialize tend to be for students with physical or vision impairments. Only three assess students with behavior disorders. This may reflect the number of assistive technologies available for that population.

- **Purpose.** ATOMS identified nine distinct purposes of assessments. No one instrument can be used for all nine. Twenty of the 28 are identified as being comprehensive, in that they contribute to overall understanding of problems in order to identify needs. Other common purposes of selected instruments include screening, implementation, follow-up, and impact (see text box). Referral and acquisition are procedural steps that may be assumed in other purpose categories such as screening and comprehensive but are not specifically identified. Similarly, matching person to technology, although part of every assessment process, may not be systematically or formally investigated. Outcomes, defined as

<table>
<thead>
<tr>
<th>Common Purposes of Selected Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common purposes of selected instruments include:</td>
</tr>
<tr>
<td>Screening tools provide a quick look at an individual for deficits that may be addressed with assistive technology and suggest a further assessment if needed.</td>
</tr>
<tr>
<td>Implementation instruments go beyond the identification of a device and provide practical suggestions for implementing AT and concrete measurements that can be used to demonstrate progress toward the goals.</td>
</tr>
<tr>
<td>Follow-up instruments plan for periodic check ups similar to the implementation instruments.</td>
</tr>
<tr>
<td>Impact instruments document changes in human performance and the system as a whole that contribute to task performance. Referral, matching person to technology, acquisition, and outcomes are the purposes that have the fewest instruments available.</td>
</tr>
</tbody>
</table>
identifying levels of overall performance, participation in community, or quality of life, are found only on seven of the twenty-eight instruments. This is clearly an area of AT assessment that needs further development.

- **Format.** The two data collection formats that are most commonly used are checklists and questionnaires. Most of the nine formats identified yield qualitative data with the exception of ranking scales. The two activity formats and the software based assessment may provide some quantitative data, as well. Quantitative data are more commonly accepted for demonstrating change in performance. Two of the instruments—Curriculum Ties, Independence, Responsibility, Choice, Universal Design, Incentive Toolbox [CIRCUIT] and Functional Evaluation for Assistive Technology [FEAT]—use three types of data collection, which may yield a more complete perspective of the individual. Six use only one format, with the rest using two types.

A Look at Selected AT Assessments

Selecting an AT assessment instrument should be guided by the student being assessed, the team’s expertise at assessing, and the availability of instruments. Following are descriptions of 8 instruments that can be used to assess AT. These are based on their breadth in terms of areas of function, age, disability, and purpose. Unless otherwise noted, the descriptions are from the ATOMS database (http://www.r2d2.uwm.edu/atoms/idata/all-idata.cfm).

Diagnostic/Intervention

Assessing Student Needs for Assistive Technology (ASNAT) (4th edition)

ASNAT is designed to help teachers and school therapists. ASNAT provides a wealth of information about assistive technology. The first chapter explains both the assessment procedure that Wisconsin Assistive Technology Initiative (WATI) teaches and the packet of forms that WATI has developed to support school teams as they complete the assessment process. These can be reproduced for use by the school district. Each subsequent chapter provides detailed information on specific assistive technology and its use. Chapters address the tasks that students must be able to do such as write, communicate, read, study, etc. The appendix contains numerous resources including print, web, and AT vendors.

- **Functional areas:** All but ADL.
- **Age:** Birth through high school.
- **Disabilities:** All.
- **Purpose:** All except impact and outcomes.
- **Format:** Checklist and questionnaire.
- **Validity/reliability data:** None.

Education Tech Points: A Framework for Assistive Technology Planning

This manual helps school districts determine and meet the assistive technology needs of individual students and to evaluate and improve their assistive technology services systemwide. The manual provides an overview of the Education Tech Points framework and its uses. At each Education Tech Point, key questions to be considered are highlighted and implications for school districts are discussed.

- **Functional areas:** All but ADL.
- **Age:** Birth through high school.
- **Disabilities:** All.
- **Purpose:** All except matching person, follow up, and outcomes.
- **Format:** Checklist and sample based activities.
- **Validity/reliability data:** None.

Functional Evaluation for Assistive Technology (FEAT)

FEAT is an easy to use, systematic, comprehensive, multidimensional, and ecologically-based assessment protocol that can be used with people of all ages from elementary aged students through postsecondary adults. The scale can be used to determine the most appropriate and effective assistive technology devices to help individuals with
learning and/or intellectual disabilities compensate for their difficulties and meet the demands of specific tasks and contexts. FEAT has five scales:

- **Contextual Matching Inventory** (which provides information about setting-specific demands).
- **Checklist of Strengths and Limitations** (which is used to gather data regarding person-specific characteristics).
- **Checklist of Technology Experiences** (which offers additional information about the person-specific characteristics with regard to her or his past/current use of technology).
- **Technology Characteristics Inventory** (which examines device-specific characteristics such as dependability, product support, etc.).
- **Individual-Technology Evaluation Scale** (which examines device-specific characteristics such as dependability, product support, etc.).

The summary and recommendations booklet is used to summarize the assessment information, make recommendations, and arrange for follow-ups to assess for effective implementation. The scales are completed by various members of the assistive technology assessment team and allow for an ecological assessment of assistive technology needs.

- **Functional areas**: All but ADL.
- **Age**: All.
- **Disabilities**: All.

- **Purpose**: All except implementation, impact, and outcomes.
- **Format**: Checklist, questionnaire, and survey.
- **Validity/reliability data**: Yes.

Matching AT & Child (MATCH)

The MATCH process consists of a progression of instruments designed for AT evaluators, technology providers, Individualized Education Program (IEP) and Individualized Family Service Program (IFSP) teams, AT service coordinators, therapists, and parents concerned about achieving the most appropriate AT match. Each of the instruments is meant to be completed by the child and/or parent and evaluator in partnership so that dialogue occurs around options, expectations, and concerns and to assist in:

- Choosing the most appropriate technology when there is a choice of several.
- Deciding if a technology is the most appropriate choice given the characteristics of the person, technology & environment.
- Deciding on the most appropriate training strategies to ensure optimal use of a technology.

Each of the instruments is quick, easy, and self-explanatory and no specific scoring system need be used for most practical applications. Careful completion of each instrument item and observation of the balance of positive to negative responses will often give the provider sufficient insight to determine the quality of the match (http://matchingpersonandtechnology.com).

- **Functional areas**: All.
- **Age**: Birth through high school.
- **Disabilities**: All.
- **Purpose**: Screening, matching person, impact, and outcomes.
- **Format**: Questionnaire and rating scale.
- **Validity/reliability data**: None.

Matching Persons with Technology (MPT)

The MPT process contains a series of instruments—self-report checklists about consumer predispositions to and outcomes of technology use—that take into account the environments in which the person uses the technology, the individual’s characteristics and preferences, and the technology’s functions and features.

- **Functional areas**: All.
- **Age**: Middle school through adult.
- **Disabilities**: All.
- **Purpose**: Screening, referral, comprehensive, matching person, impact and outcomes.
- **Format**: Checklist and questionnaire.
- **Validity/reliability data**: Yes.

University of Kentucky Assistive Technology (UKAT) Toolkit

The UKAT Toolkit is a series of tools that guide the assistive technol-
Technology (AT) professional and AT team through the assistive technology process. The process begins with the consideration of AT and continues through implementation and the ongoing monitoring of devices and services implemented.

The UKAT Toolkit is a product of six years of AT research conducted at the University of Kentucky in collaboration with six school districts in Kentucky. It provides a systematic method of delivering AT services to students. It is based on the following premises:

- The first goal in special education is to improve a student’s ability to successfully function in school, responding to the demands presented by the general curriculum and school environment.
- No technology and low technology solutions should be considered before high technology solutions.

The Toolkit systematically guides IEP and AT teams in considering the use of AT from referral through implementation.

- **Functional areas**: All but ADL.
- **Age**: Birth through high school.
- **Disabilities**: All.
- **Purpose**: Screening, referral, comprehensive, acquisition, implementation, follow up, and impact.
- **Format**: Checklist and questionnaire.
- **Validity/reliability data**: None.

Satisfaction

Quebec Evaluation of Satisfaction with Assistive Technology (QUEST) (Version 2.0)

QUEST is a structured and standardized measure of user satisfaction with a wide range of technology devices. The concept of satisfaction consists of two factors related to assistive technology—Device (8 items) and services (4 items). QUEST can be self-administered or interview-based. With regard to its psychometric properties, QUEST has been tested for internal consistency, test-retest stability, content validity, and factorial validity. It is available in English, French and Dutch (http://atrc.utoronto.ca/index.php?option=com_content&task=view&id=178&Itemid=69).

- **Functional areas**: All.
- **Age**: Middle school through adult.
- **Disabilities**: All.
- **Purpose**: Follow up and impact.
- **Format**: Questionnaire and rating scale.
- **Validity/reliability data**: Yes.

Outcomes/Research

Psychosocial Impact of Assistive Devices Scale (PIADS) (Version 4.2)

The PIADS is an easy to use self-rating scale designed to measure the impact of rehabilitation products on the quality of life of the users of these products. PIADS rates products on items that reflect important aspects of quality of life:

- Adaptability (reflecting attitude toward social participation and risk-taking).
- Competence (reflecting perceived functional capability, independence and performance).
- Self-esteem (reflecting self-confidence, self-esteem, and emotional well being).

PIADS has been shown to be a reliable and responsive measure that, because of its brevity, can be included easily with routine clinical assessments.

- **Functional areas**: All.
- **Age**: Elementary through adult.
- **Disabilities**: All.
- **Purpose**: Comprehensive and outcomes.
- **Format**: Questionnaire and rating scale.
- **Validity/reliability data**: Yes.

Using AT Assessments in Practice

In whatever capacity AT assessments are used, certain steps should be followed to ensure consistent administration. A review of multiple assessments and their procedures
Universal Design

Universal design is defined as the design of products and environments that can be used and experienced by people of all ages and abilities, to the greatest extent possible, without adaptation (Mace, 1997). This implies that all products and services developed using universal design principles are equally accessible to all individuals irrespective of differing abilities. An example is an automatic door that can be operated with sensor mats. Opening the door in this case requires minimal physical effort and no additional tasks.

Both AT and universal design are intended to improve function in people with disabilities. AT and universal design can work together, the former as an intervention and the latter as a pre-intervention (Smith, Rust, & Siegler, 2007). A complete assessment involves evaluating the environment and the device itself. Striving for universal design of both reduces the chance of abandonment.

Accessibility

Americans with Disabilities Act (ADA) accessibility checklists have been created by various agencies that specifically evaluate the implementation of the ADA guidelines which provide a baseline for implementing accessibility:

- Universal Design Performance Measures for Products recognizes that universal design is not a purely architectural construct and that manufactured products need to be evaluated as well. It does not determine the overall accessibility of a product (Story, Mueller, & Montoya-Weiss, 2002).

- Rehabilitative Engineering and Research Center (RERC) on Accessible Medical Instrumentation developed the Mobile Usability Lab performs a detailed task analysis of the accessibility and use of a medical device and integrates universal design principles to determine the overall universal design of a device (RERC-AMI, 2007).

- Medical Equipment Device—Accessibility and Universal Design Information Tool (MED-AUDIT) is a software-based dynamic assessment of universal design of medical devices being developed by the Rehabilitation Research Design and Disability Center (R2D2) as part of the RERC on Accessible Medical Instrumentation. It quantitatively assesses the accessibility and usability of medical devices (Smith, Barnekow, Lenke, Mendonca, Schwanke, & Winters, 2006).

resulted in the following list of steps to implement an assessment in practice.

- **Identify the problem.** Identify the need for an intervention.
- **Collect demographic information.** Include age, gender, and family support.
- **Identify team members.** Based upon the area in which the assessment is administered, all relevant team members should be identified and included in the process. For example, in a school system, team members may include the special education teacher, occupational therapist, physical therapist, speech...
Determine which assessment tool to use. This decision should be made collaboratively with all team members to ensure that the tool meets all functional area needs for the individual.

Collect background information. Include functional abilities of the individual, available resources such as family support, community support, roles that the individual takes up in different situations, and environments in which he or she usually interacts.

Determine the individual’s preferences and needs. Consider these in relation to the problem.

Identify funding sources. Consider resources for both technology and services.

Choose a tool or technology. Base the decision on the assessment data.

Provide training in how to use the tool. Include the individual, family, and service providers.

Evaluate success. Consider using multiple trials. If required, modify the tool or technology to best meet the individual’s needs.

Conduct ongoing assessment and follow-up. Modify the tool as needed.

Administration of an assessment using these steps will ensure consistent evaluation and will meet the needs of the individual. Using assessments in practice requires the assessor to take a number of factors into consideration. These factors relate to the tool itself as well as to the practicality of administering the tool.

Some of these factors are general usability requirements. They include:

- **Ease of administration.** An assessment that is not seamless and intuitive is not easy to administer and will not be adopted easily. A good assessment should be easy to administer.
- **Time required for administration.** Therapists and teachers in practice are required to administer assessments in a limited amount of time. An assessment that is time consuming and lengthy is not practical.
- **Training required for administration.** Similar to ease of administration and time required for administration, an assessment that requires the assessor to obtain specialized training may not be feasible.
- **Ease of interpretation and application.** An assessment that does not provide sufficient information for interpreting it is not useful to administer. Instructions for all assessments should be detailed and informative. If the assessment is quantitative, details for interpretation of scores should be provided.
- **Cost of testing.** An assessment should not be costly.
- **Reliability and validity.** Although these properties are not often reported, they are essential in ensuring that the assessment chosen is appropriate to the situation in which it will be administered. Misuse of assessments can lead to incorrect prescriptions of tools and technology, which may impede or delay development or recovery.

Conclusion

As more staff becomes proficient in assistive technology and gain experience with AT assessment, results will improve for students with disabilities. The number of AT assessment tools featured in this *Technology in Action* is a testament to the advancement of the field and its future direction. As better, more valid, and more reliable instruments become available, AT will be more appropriately recommended and applied. Students will have better access to education and more opportunities to participate in life.

References

Appendix 1. List of assessments discussed in this Technology in Action along with source information

<table>
<thead>
<tr>
<th>Instrument Title</th>
<th>Publisher</th>
<th>Publication Year</th>
<th>Price*</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistive Technology Assessment of Access</td>
<td>Custom Solutions</td>
<td>2005</td>
<td>$6.00</td>
<td>www.customtyping.com/</td>
</tr>
<tr>
<td>Compass: Access Assessment Software</td>
<td>Koester Performance Research</td>
<td>2004</td>
<td>$179.00</td>
<td>www.kpronline.com</td>
</tr>
<tr>
<td>Evaluware</td>
<td>Assistive Technology Inc.</td>
<td>2002</td>
<td>$150.00</td>
<td>www.assistivetech.com/p-evaluware.htm</td>
</tr>
<tr>
<td>Learning Media Assessment of Students with Visual Impairments</td>
<td>Texas School for the Blind and Visually Impaired</td>
<td>1995</td>
<td>$25.00</td>
<td>www.tsbvi.edu/publications/lma.htm</td>
</tr>
<tr>
<td>MATCH: Matching AT & Child</td>
<td>Matching Persons and Technology Institute</td>
<td>2003</td>
<td>$29.95</td>
<td>members.aol.com</td>
</tr>
<tr>
<td>MPT: Matching Persons with Technology</td>
<td>Matching Persons and Technology Institute</td>
<td>2004</td>
<td>$29.95</td>
<td>members.aol.com/impt97/orderform.html</td>
</tr>
<tr>
<td>PCA: Physical Characteristics Assessment</td>
<td>Don Johnston Inc.</td>
<td>2000</td>
<td>$24.95</td>
<td>donjohnston.com/catalog/pcachkdtxt.htm</td>
</tr>
</tbody>
</table>
Appendix 1. List of assessments discussed in this Technology in Action along with source information (continued from page 10)

<table>
<thead>
<tr>
<th>Instrument Title</th>
<th>Publisher</th>
<th>Publication Year</th>
<th>Price*</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered-Mobility Indoor Driving Assessment (PIDA)</td>
<td>Sunnybrook and Women’s College Health Sciences Center</td>
<td>1995</td>
<td>$70.00</td>
<td>http://fhs.mcmaster.ca/powermobility/pida.htm</td>
</tr>
<tr>
<td>Preschool AAC Checklist</td>
<td>Mayer Johnson Inc.</td>
<td>2001</td>
<td>$19.00</td>
<td>www.mayerjohnson.com</td>
</tr>
<tr>
<td>Psychosocial Impact of Assistive Devices Scale (PIADS): Version 4.2</td>
<td>The University of Western Ontario</td>
<td>2002</td>
<td>no cost</td>
<td>www.utoronto.ca/atrc/reference/atoutcomes/PIADS.html</td>
</tr>
<tr>
<td>QUEST (Version 2.0): Quebec Evaluation of Satisfaction with Assistive Technology</td>
<td>University of Montreal</td>
<td>2000</td>
<td>$19.95</td>
<td>members.aol.com/impt97/orderform.html</td>
</tr>
<tr>
<td>Seated Postural Control Measure (SPCM) [for children]</td>
<td>Sunny Hill Health Centre for Children</td>
<td>1994</td>
<td>$40.00</td>
<td>wwwcwbc.ca/sunnyhill/shhccrschSPCM.asp</td>
</tr>
<tr>
<td>Seating & Mobility Evaluation Form</td>
<td>Delia Freeney, OTR</td>
<td>1996</td>
<td>$37.50</td>
<td>http://www.allkidscovered.com/assets/hfs3701h.pdf</td>
</tr>
<tr>
<td>See It Right!</td>
<td>D. Henson-Parker</td>
<td>1994</td>
<td>$345.00</td>
<td>wwwseeitright.com/pages/prices.htm</td>
</tr>
<tr>
<td>SFA: AT School Function Assessment (AT Supplement)</td>
<td>University of Wisconsin-Milwaukee</td>
<td>2003</td>
<td>no cost</td>
<td>wwwr2d2uwm.edu/oats/</td>
</tr>
<tr>
<td>Stages: Software Solutions for Special Needs</td>
<td>Assistive Technology Inc.</td>
<td>2002</td>
<td>$1,000.00</td>
<td>wwwassistivetech.com</td>
</tr>
<tr>
<td>UKAT Toolkit</td>
<td>University of Kentucky</td>
<td>2002</td>
<td>no cost</td>
<td>http://serc.gws.uky.edu/www/ukatii/</td>
</tr>
<tr>
<td>Wheelchair Skills Program (Ver. 3.1)</td>
<td>download from internet</td>
<td>2004</td>
<td>no cost</td>
<td>wwwwheelchairskillsprogram.ca</td>
</tr>
</tbody>
</table>

*Prices checked as of publication date.
Appendix 2: Characteristics of 28 assistive technology assessments organized by ATOMS Project categories

<table>
<thead>
<tr>
<th>Disability</th>
<th>Age</th>
<th>Functional Area</th>
<th>Instrument Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormalities</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Brain INJURY</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Elderly</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Child</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Adult</td>
<td>Upper Extremity</td>
<td>Adaptive and Augmentative Technology</td>
</tr>
</tbody>
</table>